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Abstract. A perturbative procedure is used to calculate the transfer matrix and the tunnelling 
transmission coefficient through a structured potential barrier. The potential is first approxi- 
mated by a steplike function constructed from a partition procedure. The rate of conver- 
gence is only I’ ( I  is the step size). Then a Peano perturbative solution is used to achieve 
an I‘ convergence rate. The accuracy of the procedure is illustrated with the following 
examples: the trapezoidal barrier, the exactly soluble 15 sech2(z) barrier and the biased 
quantum well. 

1. Introduction 

Submicron physical systems involving tunnelling are currently studied in view of signal 
processing applications: quantum wells (Chang et a1 1974), superlattices (Payne 1985), 
in the interpretation of scanning tunnelling transmission microscopy images (Lang 
1986) and also in the open field of molecular electronics (Carter 1984). 

The understanding of these systems requires the calculation of the electron trans- 
mission coefficient T (  E )  through barriers which can have a rather simple structure 
(the single quantum well, for instance) or a complicated one as in the Aviram-Ratner 
molecular diode (Aviram and Ratner 1974). For one-dimensional systems, Landauer 
(1970) has related T (  E )  to the conductance and generalisations have recently appeared 
for multichannel systems (Buttiker er a1 1985). 

The W K B  approximation gives a good evaluation of T ( E )  for thick structureless 
barriers when a low polarising voltage is applied (Simmons 1963). But for more 
complicated structures, resonances (Ricco and Azbel 1984) are not well reproduced 
by WKB since matching of the wavefunction in different regions is required. 

The transfer matrix, M ( z ,  zo), has been used in the theory of tunnelling to solve 
the Schrodinger equation, mostly for square potentials (see, for example, Mora et a1 
1985 and references therein). It provides a good numerical way of computing T ( E )  
as soon as the obstacle has a repeated structure; for instance, random chains in 
localisation theory (Stone ef al 1981) and superlattices (Tsu and Esaki 1973). 

In this paper, we go further by developing the transfer matrix in a Peano perturbative 
series (Reed and Simon 1975). Even in the finite voltage case, it leads to a T ( E )  
calculation with perturbative corrections. In § 2, we review the transfer matrix tech- 
nique; in § 3, a Peano development of M (  z, zo) is given in the ‘interaction picture’ and 
the convergence rate analysed; in 0 4, we present numerical results for two potentials, 
the biased quantum well and the barrier U ( z )  = 15 sech2(z), as tests of the accuracy 
of our perturbative technique. 
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2. The transfer matrix M ( r ,  zi,) 

Let us consider, for a fixed real E, the initial value problem 

z , s z s Z  
( -d2/dz2+ U ( Z ) -  E)cp(z)=O 

cp(Z0) = g1 (dcp/dz)(zo) = g2 

where U ( z )  is a real-valued bounded function with its compact support supp( V )  
included in the interval I = [zo, Z]. Equation ( l a )  is the Schrodinger eigenvalue 
problem for a particle of mass m and energy h 2 E / 2 m  in a potential h2U(z ) /2m.  

On the set @ ‘ ( Z ) n  L 2 ( I )  of continuous square integrable functions on I with 
continuous derivatives, the solutions of (1) are the connection geodesics on the manifold 
AI  = { y  E C 2 ;  y = ( ~ ( z ) ,  dcp(z)/dz), z E I }  (see, for example, Dieudonnt 1971) and the 
dual problem of (1) is the initial value problem 

(d+/dz) (z)  = P(z )+(z )  i2a)  

$(zo) = ‘ k l ,  gz) (2b )  

with +(z)=’(cp(z), dcp(z)/dz). For each Z E  I ,  P ( z )  is an operator on L 2 ( I ) @ L ’ ( I )  
defined by 

P ( z )  is a bounded non-self-adjoint operator with a spectrum c r ( P ( z ) )  = 

{*( U ( z )  - and a norm IIP(z)il= supz t l  ( I (  U ( z )  - E)1’21). Notice that because 
P ( z )  is bounded it is sufficient to add a fixed real number b 2 I /  P (  z)  1 1  so that P (  z) + b 
can be inverted on the whole interval: M(z ,  zo) is the propagator generated by P ( z )  
which gives the solution of (2)  (Reed and Simon 1975): 

+(z)  = M(z,  zo)+(zo). (4) 
This operator M ( z ,  zo), sometimes called a monodromy transformation (Arnold 1980), 
has the following properties: 

w z , ,  zo)  = 1 ( 5 a )  

M(z ,  zo) = M(z ,  ZI)M(Zl, zo) i5b )  

M(z ,  zo) is jointly continuous in z, zo (5c)  

det M(z ,  zo) = 1. ( 5 d )  

The first three properties come from the existence of a propagator for (2) and (5c)  
guarantees the continuity of cp(z) and dcp(z)/dz as a solution of (1). The property 
( 5 d )  comes from the real valuedness of U ( z )  and from the conservation of the 
probability current density: because ( l a )  is an  eigenvalue equation, one obtains for 
z E Z, j (  z)  = j (  zo) with 

and  this leads to ( 5 d )  because from (4) 

j ( z )  = det M(z ,  zo)j(zo). (7)  
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The physical properties of a barrier with a shape U ( z )  are obtained through a 
non-unitary transformation of M ( z ,  2"). Using ( 5 b )  and the calculated M(z ,  zo)  for 
U ( z )  = 0, M ( z ,  zo) can be written 

(8) M ( z, 2") = [exp( P(  Z )  z x ( z I S( Z, zc) [ exp( P ( zo )  zo) X ( zo) I- '  
where X ( z )  is an  invertible operator independent of z if d U(z ) /dz  = 0 and 

S ( Z, zo)  = [ exp( P( Z ) b 1 X Z ) 1 M ( Z, zo) [ exp( P ( zo) a 1 X ( 4 1 (9) 

with [a, b ]  the smaller interval including the whole supp(dU/dz ) .  The characterisation 
of the transmission properties of the barrier for a particle of wavevector k ( z )  = 
( E  - U ( Z ) ) " ~  is achieved by the choice 

ik (z )  - ik(z) 
X ( z )  = (10) 

in the non-unitary transformation (9) of M ( b ,  a ) .  On A, ,  this choice is equivalent to 
decomposing locally $( z) into e x p ( i i k (  z)z).  The S(Z, zo)  matrix elements satisfy 
S2,=  ST, and  Sl2= S,*, according to the real valuedness of U ( z )  and ISlI12-IS12Jz= 
k ( a ) k ( b ) - '  from the current conservation: only a modulus and  a phase characterise 
the barrier. Notice that k ( a ) k ( b ) - l #  1 for a biased barrier. From (4), (8) and  ( lo) ,  
the current ( 6 )  becomes 

A Z )  = ( W a ) / m ) l A I 2 T ( E )  (11) 

T ( E )  = k ( a ) k ( b ) - ' / S , 1 1 - 2  (12) 

where 

and  A is the incident amplitude. 
When two or more barriers are put together, the phase shift arg( SI - arg( SI2) must 

be used to estimate T (  E ) ,  because in this case there is no  superposition rule for T (  E )  
(Saso et a1 1985) and the final value must be calculated with ( 5 6 ) .  This phase shift 
can also be used to evaluate the density of states (Avishai and  Band 1985). In the 
following, M(z ,  zo )  is evaluated in order to compute T ( E )  from (9) and  (12). 

3. Perturbation expansion of M ( t ,  to) 

From (2) and (4), M(z ,  zo) is the solution of the initial value problem 

d M ( z ,  z,)/dz = P ( z ) M ( z ,  z,,) ( 1 3 ~ )  

M(z,,  20)  =U. ( 1 3 6 )  

The solution of (13) can be obtained as a finite or  infinite product of exponentials of 
operators (Magnus et a1 1966), as a series involving the multiple commutators of P ( z )  
(Bialynicki-Birula et al 1969) or as a Peano series (Reed and Simon 1975). The second 
method is useful for the P (  z )  operator which leads to a vanishing multiple commutator 
in finite order. The first reduces to the second after factorisation of the exponentials. 
Only the last one will be considered in the following: 

dz,P( z I )P(  2 2 )  . . . P(  z,). (14) 
m = I  
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For P(z) given by (3), the Peano series can be summed for specific U(z) ,  for instance 
a steplike function U(z) ,  as follows. 

Let {a,} ,=, . ,  be the positions of the discontinuities of a steplike function U(z)  on 
I ,  and a,=z,. Because d U ( z ) / d z  for z ~ ] a , - , ,  a , [ ,  we obtain from (14): 

XP(Zl)P(Z*).  * .  P(z,). (15) 

By repeating this procedure for the other integrals, the P ( z )  product will be constant 
on every m-dimensional integration domain, leading to 

This is a useful expression for computing T (  E )  for a random or periodic succession 
of barriers like a superlattice (Tsu and Esaki 1973). 

For a more general bounded U(z) ,  (16) can also be used but with U(z)  approxi- 
mated by a steplike function U"'(Z), as suggested by Mora et a1 (1985) where N is 
the approximation order. 

To construct U"' (Z) ,  [z,, Z ]  is divided in 2 N  subintervals of length l ! N l  = 
( Z  - ~ , ) 2 - ~  and boundaries qNI( j )  = z n + j / ( N )  for j = 0, 2N. The amplitude of each 
2Nth step can be, for example, 

Only the second choice will be considered, to avoid the 2 N  integrals. 
The approximation P c N 1 ( z )  of P ( z )  is obtained from U'"'(Z) just as P ( z )  is 

obtained from U(z)  in (3). With P"'(z) substituted in (13), (13) is exactly solvable 
as has already been demonstrated and its solution M"'(z, zo) is given by (16). 

From (16) and for large N, M"'(z, Zo) can be developed up to the third order in 
l ( N - 1 ) :  

M"'(z, zo) = ll [ ~ ( ~ - ' ' ( q ~ - ~ ~ ( j +  I ) ,  qN-lJ(j))+ /:N-I)C'N-')(j)+O(lPN-IJ)I 
*%C-lLl 

j=n 

with C ( N - O ( j )  the bounded operator, defined by 

A cluster expansion of (17) gives the lowest-order correction to M"-"(Z, zo) in terms 
of U (  z )  derivatives: 
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In (19) and for any order N,  the term in brackets is majored in norm by 2 ( Z -  

norm convergent to the exact solution of ( 1 3 )  with a l : N - l l  rate which also, according 
to (12 ) ,  is the convergence rate for T ( E ) .  

To improve convergence, M"'(Z, zo) can be chosen as the zeroth order for a Peano 
perturbative development of M (  Z, zo )  because this series converges like the exponential. 
As in the interaction picture of time-dependent perturbation theory, the corresponding 
P c N ) (  z )  gives the non-perturbative part of P( z )  in ( 1 3 a )  and Q"'( z )  = P (  z )  - P c N ' (  z )  
the perturbation. (The Q"'(z) singularity arising from det( Q"'( z ) )  = 0 can be 
removed as was done for P ( z )  in 8 2 . )  Thus M"'(z,  zo) defines the transformation 
from 'the Schrodinger picture' ( 1 3 )  to the 'interaction picture': 

zo)llCI) exp[211PII(Z-zo)]. Therefore, the series C?==, M"'(Z ,  zo)  - M"-" (Z, zo) is 

W ( z ,  zo) = [M" ' ( z ,  z o ) ] - l M ( z ,  zo) (20 )  

where W ( z ,  zo) is the solution of the equation 

(d W / d z ) ( z ,  zo) = {[M"'(z ,  zo)]- 'Q"'(z)M"'(z ,  zo)}  W ( z ,  zo). (21 )  

As usual, the Peano solution of (21 )  can be written 
s 

M ( z ,  zo) = M"'(z, zo) + 1' dz, . . . 1" dzi 
20 20 i = l  

X{M"'(Z, z,)Q"'(Z,)M"'(Z,, z2) . . . Q"'(z,)M"'(z; ,  zo)}. (22 )  

For large N, the Taylor expansion of M"'(Z, zo) and M"'(Z, z , )Q'" ' (z , )M"'(z , ,  zo) 
as in (17 )  leads, after integration, to an l4 rate of convergence for M ( Z ,  zo) ,  calculated 

t 

N 

Figure 1. Comparison of the relative error for the zeroth (V) and first ( * )  order in the 
Peano expansion for a trapezoidal barrier (width 20 A, height 0.5 eV, applied voltage 10 V, 
effective mass 0.1 me, incident energy 0.1 eV). 
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to first order in (22). The resulting explicit expression for M ( z ,  zo) can be written 
2N-1 

M ( z ,  zo) = M"'(Z, zo)+ c M"'(Z, ai+l)ziM(N)(air zo) 
i = O  

where M"'(z, zo)  is given by (16) and 

[ V ( X ) - ~ V ( U ~ + ~ + U ~ ) ] A , ( X )  dx 

with 

Equation (23) was tested with a trapezoidal barrier: zeroth and first order T ( E )  given 
by (12) are plotted in figure 1 .  (Note that the first-order expression (23) for N = 5 is 
equivalent to the zeroth-order one for N = 1 1 . )  

4. Examples 

First we consider the potential U ( z )  = 15 sech2(z) in order to test the accuracy of the 
proposed method for a continuous potential. The exact T(  E )  is given by the formula 
(Landau and Lifshitz 1967): 

sinh2( d E )  
s i n h 2 ( d E ) + c o s h 2 ( r J 5 9 / 2 ) '  

T ( E ) =  

Vigneron and Lambin (1980) have developed an algorithm for calculating T( E )  based 
on a finite-diff erence approximation of the Schrodinger equation. A comparison 
between this algorithm and ours is given in figure 2 ( U ( z )  has been taken to vanish 
for z < 0 and z > 20 in performing the numerical computations). Our zeroth order 
gives results with a similar relative error to the Vigneron and Lambin method but the 
first-order correction greatly improves the results. 

Next the T ( E )  for a quantum well has been calculated from (23) for several applied 
voltages and compared to the Tsu-Esaki (1973) approximation, which, for a single 
quantum well, is equivalent to replacing U ( , )  by v(z)=$ eV inside the well with V 
the applied voltage (see figure 3). 

For low voltages compared to the barrier height, the Tsu-Esaki approximation 
agrees well with our calculation (see figures 4 ( a )  and ( b ) ) .  For large voltages, the 
barriers are thicker in the Tsu-Esaki approximation, so the bound states are better 
defined and the resonances are less broadened than in our approach (see figures 4(c) 
and ( d ) ) .  The potential U ( z )  of the biased quantum well (figure 3) is a piecewise 
continuous function with first-order discontinuities. Our calculation therefore uses the 
following partition procedure for each continuous part of U (  z ) :  N = 2 for the barriers 
and N = 4  for the well, and the complete transfer matrix is obtained from (16). The 
resulting T ( E )  is stable against an increase in N. 
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Figure 2. Comparison of the relative errors for the calculated transmissivity T (  E )  of the 
barrier V ( z )  = 15 sech2(z) from the transfer-matrix technique in zeroth order (A) and first 
order (*) and for the Vigneron-Lambin technique (*) and the W K B  value (0). Two 
different values of the step size have been used. Only the points need to be considered, 
the connecting lines being arbitrary ( h 2 E / 2 m  = 3.81 E is the energy in eV). 

-----, 

Figure 3. Model potential (full line) and Tsu-Esaki approximation (broken line) for a 
quantum well (widths 20 A, separation 50 A, height 0.5 eV, applied voltage 1.0 V, effective 
mass 0.1 me). 

5. Conclusion 

The one-dimensional stationary Schrodinger equation has been replaced by its dual 
equation for the transfer matrix M ( z ,  zo) .  The general solution M ( z ,  zo)  is given, after 
a discretisation of the potential, as a Peano series. M (  z, zo) is related to the transmission 
coefficient T ( E ) ,  leading to a numerical algorithm for a calculation of T ( E )  for a 
potential of arbitrary shape. Work is in progress to extend this method to a non-local 
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potential in order to calculate T(E) for structures such as the Aviram-Ratner diode 
using the pseudopotential technique. 
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